Estudio dinámico trampolín piscina

Con carácter recreativo-divulgativo, estudiamos el caso de un trampolín  instalado en una piscina  colocado a unos 0,5 m de altura, de 1,8 m de longitud y con un vuelo de unos 0.9 m de luz.

Se contrastan las impresiones de un atleta  que realiza una serie de saltos, y se procede a visualizar videos de diferentes saltos realizados.  Ver ejemplo en el link  (mortal simple con entrada de pie):

https://youtu.be/f4WTZX5uYPA

La dificultad de realizar un salto límpio es evidente y  tal como sugiere el atleta podría estar causada por un funcionamiento deficiente del  trampolín, por lo que se realizan una serie de comprobaciones

En una primera inspección visual se ve que el acero de la estructura sufre una corrosión acentuada, favorecida por el ataque químico de los componentes del agua de la piscina y la proximidad del ambiente marino. No obstante SE DESCARTA como causa principal del problema aquí tratado, aunque sea una patología a resolver dado que compromete la durabilidad de la estructura

Se realiza una  una medida de la frecuancia propia de vibración del tablero con ayuda de un acelerómetro triaxial y un analizador FFT en tiempo real. Se aprecia un valor dominante en torno a 13 Hz con estructura en vacío.

Con una persona de 80 kg en el borde resulta una frecuencia del orden de 3.8 Hz.

Consultando bibliografía elemental (wikipedia) podemos encontrar lo siguiente:

«La constante del muelle de un trampolín es ajustada generalmente por medio de un fulcro que se coloca aproximadamente a mitad del trampolín. Generalmente, los trampolines funcionan en un régimen lineal donde obedecen aproximadamente la ley de Hooke. Cuando está cargado con un bañista, la combinación de la masa aproximadamente  constante del bañista y la rigidez constante del trampolín resultan en una frecuencia resonante que es ajustable por medio de la constante del muelle (fijada por la posición del fulcro). Puesto que el sistema que resulta está en un régimen aproximadamente lineal, puede ser modelado bastante exactamente por una ecuación diferencial de segundo grado.

La frecuencia resonante se puede ajustar típicamente sobre una gama que varía de un cociente de 2:1 al 3:1″

 
Es evidente por tanto que que el  diseño actual del trampolín NO ES ÓPTIMO desde el punto de vista DINÁMICO ( fecuencia propia en carga 3,8 Hz > 2-3 Hz ) y que debería ser modificado (conservando la altura pueden variarse la posición de apoyos, aumentar elasticidad del fulcro, colocar muelles, disminuir riigidez de la tabla,  aumentar vuelo, etc) para aproximar la frecuencia propia al rango recomendado, permitiendo así más fácilmente resonancia en la vibración inducida por la actividad propia del salto.
 
Sin duda, con esta modificación el atleta podrá realizar con mayor facilidad sus piruetas.
 
* Para el siguiente verano el trampolín fue sustituido por uno nuevo, con lo cual se solventaron los problemas de durabilidad, pero la frecuencia propia con carga paso a ser de 15 Hz,, por lo que las condiciones dinámicas empeoraron aún más, y con ello la dificultad de realizar los saltos.
 
En cambio, en una piscina contigua, la sustitución se realiza por un sencillo diseño, que mantiene frecuencias bajas ( <3,5 Hz según peso del saltador, que sin ser óptimas permite mayor versatilidad de uso que el anterior)